Markoff–Rosenberger triples and generalized Lucas sequences

نویسندگان

چکیده

Abstract We consider the Markoff–Rosenberger equation $$\begin{aligned} ax^2+by^2+cz^2=dxyz \end{aligned}$$ a x 2 + b y c z = d with $$(x,y,z)=(U_i,U_j,U_k)$$ ( , ) U i j k , where $$U_i$$ denotes i -th generalized Lucas number of first/second kind. provide an upper bound for minimum indices and we apply result to completely resolve concrete equations, e.g. determine solutions containing only balancing numbers Jacobsthal numbers, respectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On generalized Lucas sequences

We introduce the notions of unsigned and signed generalized Lucas sequences and prove certain polynomial recurrence relations on their characteristic polynomials. We also characterize when these characteristic polynomials are irreducible polynomials over a finite field. Moreover, we obtain the explicit expressions of the remainders of Dickson polynomials of the first kind divided by the charact...

متن کامل

On Pseudoprimes Related to Generalized Lucas Sequences

In this paper we consider the general sequences U„ and Vn satisfying the recurrences Un+2=mUn+l + Un, Vn+2=mV„+l+V„, (1.1) where m is a given positive integer, and UQ = 0, Ux = 1, V0 = 2, V1 = m. We shall occasionally refer to these sequences as U(m) and V(m) to emphasize their dependence on the parameter m. They can be represented by the Binet forms Un = {a-ni{a-P\ Vn = a+f3\ (1.2) where a+j3 ...

متن کامل

Some Identities for Generalized Fibonacci and Lucas Sequences

In this study, we define a generalization of Lucas sequence {pn}. Then we obtain Binet formula of sequence {pn} . Also, we investigate relationships between generalized Fibonacci and Lucas sequences.

متن کامل

Diophantine Triples with Values in the Sequences of Fibonacci and Lucas Numbers

Let FL = {1, 2, 3, 4, 5, 7, 8, 11, 13, 18, 21, . . .} be the set consisting of all Fibonacci and Lucas numbers with positive subscripts. We find all triples (a, b, c) of positive integers a < b < c such that ab + 1, ac+ 1, bc+ 1 are all members of FL.

متن کامل

On The Generalized Lucas Sequences by Hessenberg Matrices

We show that there are relationships between a generalized Lucas sequence and the permanent and determinant of some Hessenberg matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Periodica Mathematica Hungarica

سال: 2021

ISSN: ['0031-5303', '1588-2829']

DOI: https://doi.org/10.1007/s10998-021-00430-w